A Consensus-Focused Group Recommender System

نویسندگان

  • Stratis Ioannidis
  • S. Muthukrishnan
  • Jinyun Yan
چکیده

In many cases, recommendations are consumed by groups of users rather than individuals. In this paper, we present a system which recommends social events to groups. The system helps groups to organize a joint activity and collectively select which activity to perform among several possible options. We also facilitate the consensus making, following the principle of group consensus decision making. Our system allows users to asynchronously vote, add and comment on alternatives. We observe social influence within groups through post-recommendation feedback during the group decision making process. We propose a decision cascading model and estimate such social influence, which can be used to improve the performance of group recommendation. We conduct experiments to measure the prediction performance of our model. The result shows that the model achieves better results than that of independent decision making model. The demo is accessible at http://tinyurl. com/grouprecsys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Adaptive Educational Hypermedia ‎Recommender Accommodating User’s Learning ‎Style and Web Page Features‎

Personalized recommenders have proved to be of use as a solution to reduce the information overload ‎problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers ‎suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. ‎Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...

متن کامل

An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms

With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...

متن کامل

Applied graph mining technique to discover consensus graphs from group ranking decisions

The group ranking approach has been applied in many applications, such as in decision-making support systems, group recommendation systems, and so on. Previous studies have focused on how to generate a total ranking list. When there is no consensus or only slight consensus in the users’ opinions or preferences, this kind of result may damage the decision-maker’s decision. For this reason, this ...

متن کامل

A New WordNet Enriched Content-Collaborative Recommender System

The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...

متن کامل

A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis

Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1312.7076  شماره 

صفحات  -

تاریخ انتشار 2013